Exercise 1

What are the "orders" of the following quantities: $(\mathbf{v} \cdot \mathbf{w}),(\mathbf{v}-\mathbf{u}) \mathbf{w},(\mathbf{a b}: \mathbf{c d}),[\mathbf{v} \cdot \rho \mathbf{w} \mathbf{u}]$, $[[\mathbf{a} \times \mathbf{f}] \times[\mathbf{b} \times \mathbf{g}]]$?

Solution

The order of the quantities is determined by adding the orders of the tensors involved (scalar $=0$, vector $=1$, second-order tensor $=2$, third-order tensor $=3$, and so on) and subtracting numbers based on what operations are done (dot product $=2$, cross product $=1$, and double dot product $=4$).

$$
\begin{array}{rll}
(\mathbf{v} \cdot \mathbf{w}) & \rightarrow & \text { Order }=1+1-2=0 \\
(\mathbf{v}-\mathbf{u}) \mathbf{w} & \rightarrow & \text { Order }=1+1=2 \\
(\mathbf{a b}: \mathbf{c d}) & \rightarrow & \text { Order }=1+1+1+1-4=0 \\
{[\mathbf{v} \cdot \rho \mathbf{w} \mathbf{u}]} & \rightarrow & \text { Order }=1+1+1-2=1 \\
{[[\mathbf{a} \times \mathbf{f}] \times[\mathbf{b} \times \mathbf{g}]]} & \rightarrow & \text { Order }=1-1+1-1+1-1+1=1
\end{array}
$$

For the second entry, $\mathbf{v}-\mathbf{u}$ counts as one vector and \mathbf{w} counts as the other.

